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Motivation
Primary: Lighting in volume rendering
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Secondary: Numerical methods for PDEs

finite differencing orthogonal projection
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Outline

1. Motivation         ✔

2. Two Novel Gradient Estimation Frameworks

a. Taylor Series Framework

b. Approximation Spaces

3. Comparison + Results

4. Conclusion
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Taylor Series Framework
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Background
Finite difference method for arbitrary lattices?

5

Cartesian lattice
•Axis aligned finite differences
•Higher-order filters [Möller et al. 1997]

Arbitrary Lattices
•Non-separable filters
•Need a multidimensional analysis
•Extension of [Möller et al. 1997] 
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Taylor Expansion

1. Convolution of lattice samples with a discrete filter

2. Substitute the multi-dimensional Taylor expansion...
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Taylor Expansion
...and we obtain
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f�[k] =
X

n2Ns

Dnf(hLk) · a�n
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Implementation

• Linear system is often not full rank

• Find a suitable solution by:

a. Imposing symmetry/anti-symmetry in the filter geometry

b. Minimizing error due to higher order terms

• Optimal support for a given order?

8
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Approximation Spaces

9
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Approximation space generated by shifts of a kernel

Function reconstruction from discrete measurements

Sampling, interpolation, approximation [Unser 00]

Quantitative analysis [Blu et al. 99]

Background

10
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Approximation space generated by shifts of a kernel

Function reconstruction from discrete measurements

Sampling, interpolation, approximation [Unser 00]

Quantitative analysis [Blu et al. 99]

Background
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Two Stage Gradient Approximation
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Two Stage Gradient Approximation
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1.  Approximate the function in an 
intermediate space

f1(x) =
X

k

(f ⇤ p1)[k] k(x)
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Two Stage Gradient Approximation

11

1.  Approximate the function in an 
intermediate space

f1(x) =
X

k

(f ⇤ p1)[k] k(x)

Prefilter imposes interpolation 
constraints
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Two Stage Gradient Approximation

11

2.Orthogonally project the analytical 
derivative to the target space

f2,i(x) :=
�
PVL(')

@if1
�
(x)

=
X

k

((f ⇤ p1) ⇤ d̊i)[k]'k(x)
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Two Stage Gradient Approximation

11

2.Orthogonally project the analytical 
derivative to the target space

f2,i(x) :=
�
PVL(')

@if1
�
(x)

=
X

k

((f ⇤ p1) ⇤ d̊i)[k]'k(x)
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Implementation

• Inner products easily computed
...using B-splines on CC, box-splines on BCC [Entezari et al. 2008]

• Filters are not compact
...implement in the Fourier domain during preprocessing

• Filter quality determined by the order of intermediate space
...choose a higher-order intermediate space [Alim et al. 2010] 
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Framework Comparison
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Taylor Series Approximation Spaces

Discrete
kernel not used in filter design

Compact filters
can be implemented on the fly

High quality
tune by reducing the truncation error

Continuous (feels discrete)
filters optimized for kernel

Filters have infinite support
need to compute a gradient volume

Superior quality
tune by choosing intermediate space
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Quantitative Comparison
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of OPT16, if not similar, should be marginally slower than 4-
cd despite the former having a much larger support.

Finally, Fig. 9 illustrates the result of combining the
normal estimation schemes with trilinear interpolation. We
used the high-resolution CC bunny data set for this
purpose. As before, in comparison to 2-cd, 4-cd enhances
the details slightly especially in the high-frequency regions.
These details are enhanced even further with the OP filters
ll and ql. Subtle features on the surface of the bunny, which
are smoothed out in the 2-cd rendition, are much more
clearly visible. At the same time, however, ringing artifacts
due to an imperfect CT reconstruction are also appreciably
enhanced. This suggests that the higher order OP filters
enhance high-frequency details and should therefore be
used with caution in the presence of noise.

7 CONCLUSION

In this paper, we have presented two gradient estimation
methods to extend the state of the art. We believe that these
methods have a broad range of applicability as they give the
practitioner the flexibility to design filters to suit their needs.
We extended a 1D Taylor series framework to multiple
dimensions and used it to design compact filters that can be
computed on the fly with little runtime overhead. We also
considered the idea of prefilters and derived high-quality
filters using tensor product B-splines on CC and box splines
on BCC. Our results show that, when accuracy and quality
are crucial, a filter based on the Hilbert space framework can
be employed with some storage overhead to appreciably
improve image quality. Additionally, our methods can easily
be extended to design filters that compute higher order
derivatives on arbitrary sampling lattices.

In future, we plan to extend the Taylor series framework to
design compact stencils for the numerical solution to partial
differential equations. We also plan to investigate the error
behavior of the orthogonal projection scheme in the Fourier
domain in terms of a frequency error kernel as proposed by
Blu and Unser [2]. Their formulation has the advantage that it
is applicable to a class of functions that is much richer than
the class of bandlimited functions. It also enables us to
incorporate smoothness constraints so that the L2 approx-
imation error is guaranteed for functions that are sufficiently
regular. Furthermore, the error kernel can be used to design
suboptimal projection schemes that are not only computa-
tionally more efficient but also achieve the same rate of decay
of error as the orthogonal projection scheme.
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Fig. 8. DVR images of the downsampled carp CC (a,b) and BCC (c,d) data sets (prefiltered for the respective interpolation filters) rendered at a
resolution of 600! 390 pixels. Normal computation time, scalar interpolation time, and the total render time are indicated. (a) 4-cd (56.35, 69.89,
129.00). (b) qc (35.44, 69.68, 108.33). (c) OPT16 (58.75, 68.38, 130.22). (d) NQ (29.15, 69.67, 101.55).

Fig. 9. An isosurface of the high-resolution bunny data set. Trilinear interpolation is used for both the scalar data and the gradient. (a) 2-cd. (b) 4-cd.

(c) ll. (d) ql.
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Finally, Fig. 9 illustrates the result of combining the
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purpose. As before, in comparison to 2-cd, 4-cd enhances
the details slightly especially in the high-frequency regions.
These details are enhanced even further with the OP filters
ll and ql. Subtle features on the surface of the bunny, which
are smoothed out in the 2-cd rendition, are much more
clearly visible. At the same time, however, ringing artifacts
due to an imperfect CT reconstruction are also appreciably
enhanced. This suggests that the higher order OP filters
enhance high-frequency details and should therefore be
used with caution in the presence of noise.

7 CONCLUSION

In this paper, we have presented two gradient estimation
methods to extend the state of the art. We believe that these
methods have a broad range of applicability as they give the
practitioner the flexibility to design filters to suit their needs.
We extended a 1D Taylor series framework to multiple
dimensions and used it to design compact filters that can be
computed on the fly with little runtime overhead. We also
considered the idea of prefilters and derived high-quality
filters using tensor product B-splines on CC and box splines
on BCC. Our results show that, when accuracy and quality
are crucial, a filter based on the Hilbert space framework can
be employed with some storage overhead to appreciably
improve image quality. Additionally, our methods can easily
be extended to design filters that compute higher order
derivatives on arbitrary sampling lattices.

In future, we plan to extend the Taylor series framework to
design compact stencils for the numerical solution to partial
differential equations. We also plan to investigate the error
behavior of the orthogonal projection scheme in the Fourier
domain in terms of a frequency error kernel as proposed by
Blu and Unser [2]. Their formulation has the advantage that it
is applicable to a class of functions that is much richer than
the class of bandlimited functions. It also enables us to
incorporate smoothness constraints so that the L2 approx-
imation error is guaranteed for functions that are sufficiently
regular. Furthermore, the error kernel can be used to design
suboptimal projection schemes that are not only computa-
tionally more efficient but also achieve the same rate of decay
of error as the orthogonal projection scheme.
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Fig. 8. DVR images of the downsampled carp CC (a,b) and BCC (c,d) data sets (prefiltered for the respective interpolation filters) rendered at a
resolution of 600! 390 pixels. Normal computation time, scalar interpolation time, and the total render time are indicated. (a) 4-cd (56.35, 69.89,
129.00). (b) qc (35.44, 69.68, 108.33). (c) OPT16 (58.75, 68.38, 130.22). (d) NQ (29.15, 69.67, 101.55).

Fig. 9. An isosurface of the high-resolution bunny data set. Trilinear interpolation is used for both the scalar data and the gradient. (a) 2-cd. (b) 4-cd.

(c) ll. (d) ql.
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Qualitative Comparison
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Fourth order filters on BCC + quintic box-spline interpolation

of OPT16, if not similar, should be marginally slower than 4-
cd despite the former having a much larger support.

Finally, Fig. 9 illustrates the result of combining the
normal estimation schemes with trilinear interpolation. We
used the high-resolution CC bunny data set for this
purpose. As before, in comparison to 2-cd, 4-cd enhances
the details slightly especially in the high-frequency regions.
These details are enhanced even further with the OP filters
ll and ql. Subtle features on the surface of the bunny, which
are smoothed out in the 2-cd rendition, are much more
clearly visible. At the same time, however, ringing artifacts
due to an imperfect CT reconstruction are also appreciably
enhanced. This suggests that the higher order OP filters
enhance high-frequency details and should therefore be
used with caution in the presence of noise.

7 CONCLUSION

In this paper, we have presented two gradient estimation
methods to extend the state of the art. We believe that these
methods have a broad range of applicability as they give the
practitioner the flexibility to design filters to suit their needs.
We extended a 1D Taylor series framework to multiple
dimensions and used it to design compact filters that can be
computed on the fly with little runtime overhead. We also
considered the idea of prefilters and derived high-quality
filters using tensor product B-splines on CC and box splines
on BCC. Our results show that, when accuracy and quality
are crucial, a filter based on the Hilbert space framework can
be employed with some storage overhead to appreciably
improve image quality. Additionally, our methods can easily
be extended to design filters that compute higher order
derivatives on arbitrary sampling lattices.

In future, we plan to extend the Taylor series framework to
design compact stencils for the numerical solution to partial
differential equations. We also plan to investigate the error
behavior of the orthogonal projection scheme in the Fourier
domain in terms of a frequency error kernel as proposed by
Blu and Unser [2]. Their formulation has the advantage that it
is applicable to a class of functions that is much richer than
the class of bandlimited functions. It also enables us to
incorporate smoothness constraints so that the L2 approx-
imation error is guaranteed for functions that are sufficiently
regular. Furthermore, the error kernel can be used to design
suboptimal projection schemes that are not only computa-
tionally more efficient but also achieve the same rate of decay
of error as the orthogonal projection scheme.
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Fig. 8. DVR images of the downsampled carp CC (a,b) and BCC (c,d) data sets (prefiltered for the respective interpolation filters) rendered at a
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129.00). (b) qc (35.44, 69.68, 108.33). (c) OPT16 (58.75, 68.38, 130.22). (d) NQ (29.15, 69.67, 101.55).

Fig. 9. An isosurface of the high-resolution bunny data set. Trilinear interpolation is used for both the scalar data and the gradient. (a) 2-cd. (b) 4-cd.
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cd despite the former having a much larger support.
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purpose. As before, in comparison to 2-cd, 4-cd enhances
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are smoothed out in the 2-cd rendition, are much more
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due to an imperfect CT reconstruction are also appreciably
enhanced. This suggests that the higher order OP filters
enhance high-frequency details and should therefore be
used with caution in the presence of noise.
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In this paper, we have presented two gradient estimation
methods to extend the state of the art. We believe that these
methods have a broad range of applicability as they give the
practitioner the flexibility to design filters to suit their needs.
We extended a 1D Taylor series framework to multiple
dimensions and used it to design compact filters that can be
computed on the fly with little runtime overhead. We also
considered the idea of prefilters and derived high-quality
filters using tensor product B-splines on CC and box splines
on BCC. Our results show that, when accuracy and quality
are crucial, a filter based on the Hilbert space framework can
be employed with some storage overhead to appreciably
improve image quality. Additionally, our methods can easily
be extended to design filters that compute higher order
derivatives on arbitrary sampling lattices.

In future, we plan to extend the Taylor series framework to
design compact stencils for the numerical solution to partial
differential equations. We also plan to investigate the error
behavior of the orthogonal projection scheme in the Fourier
domain in terms of a frequency error kernel as proposed by
Blu and Unser [2]. Their formulation has the advantage that it
is applicable to a class of functions that is much richer than
the class of bandlimited functions. It also enables us to
incorporate smoothness constraints so that the L2 approx-
imation error is guaranteed for functions that are sufficiently
regular. Furthermore, the error kernel can be used to design
suboptimal projection schemes that are not only computa-
tionally more efficient but also achieve the same rate of decay
of error as the orthogonal projection scheme.
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Contributions

• Taylor series framework for filter design
...easily extends to other types of filters

• Two-stage orthogonal projection framework
...easily handles other types of operators
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Two novel gradient estimation framework
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